2014年,尽管风电利用小时数大幅下降,但风电弃风却越来越少;尽管新增的装机比上一年的1609万千瓦有所降低,但也突破千万千瓦大关;尽管风电发电量增幅比上年同期有所减少,但从发电量上来看,风电依然是第三大电源。2014年,我国陆上风电增速再一次回落,而陆上风电的上网价格也有了下调预期,这些都预示着陆上风电进入平稳发展期。 相对于陆上风电的沉寂,海上风电却在提速,尽管海上风电装机仍然赶不上规划进度,但海上风电上网电价的出台,无疑是一针强心剂,强有力地刺激海上风电的发展。 2014年的我国风电,有涟漪,也有波澜。 推动风电有序发展方针不变 从2011年开始,为把握风电发展节奏,促进产业健康有序发展,国家能源局开始制定风电项目核准计划。
2014年2月中旬,国家能源局印发“十二五”第四批风电项目核准计划。通知显示,列入“十二五”第四批风电核准计划的项目总装机容量为2760万千瓦。第四批计划中,华中、华东、华南地区的建设规模占比进一步提高,已经达到了该批次全国建设总规模的60%左右。特别是湖南省的年度建设规模达到了200万千瓦,成为我国中部地区风电开发的重点省份。第四批核准数字大大超出业界预期,带给行业一个明确信号:国家将继续推动和大力支持风电发展。 2014年4月14日,国家能源局发布《关于做好2014年风电并网和消纳工作的通知》。通知对2014年风电并网、风电消纳工作做出了明确指示。2014年8月4日,国家能源局下发《关于规范风电设备市场秩序有关要求的通知》,要求加强检测认证确保风电设备质量,规范风电设备质量验收工作,进一步提高我国风电设备质量水平,规范市场秩序。 在密集出台规范风电发展的相关文件的同时,国家发展改革委价格司召开了“陆上风电价格座谈会”,通报调价设想方案并征求意见,这意味着风电上网电价下调已进入政策议程,出台预期渐浓,而“十三五”风电规划和消纳能力研究也开始启动。 我国陆上风电进入平稳发展期。 海上风电价格出台发展提速 2014年的风电发展,海上风电是一大亮点:6月5日,国家发展改革委出台《关于海上风电上网电价政策的通知》,确定了2017年以前投运的非招标的海上风电项目上网电价,提出鼓励通过特许权招标等市场竞争方式确定海上风电项目开发业主和上网电价。通知规定,对非招标的海上风电项目,区分潮间带风电和近海风电两种类型确定上网电价。2017年以前投运的潮间带风电项目含税上网电价为每千瓦时0.75元,近海风电项目含税上网电价为每千瓦时0.85元。2017年及以后投运的海上风电项目,将根据海上风电技术进步和项目建设成本变化,结合特许权招投标情况另行研究制定上网电价政策。 好消息还在传来,2014年12月12日,国家能源局发布《全国海上风电开发建设方案(2014~2016)》,44个海上风电项目列入开发建设方案,总容量达1053万千瓦。方案明确,列入开发建设方案的项目视同列入核准计划,应在有效期(2年)内核准。在有效期内尚未完成核准的项目须说明原因,重新申报纳入开发建设方案。对于今后具备条件需纳入开发建设方案的新项目,待开发建设方案滚动调整时一并纳入。 2014年的海上风电赚足了眼球!
风电海外投资获突破 2014年11月17日,中国国电集团公司下属龙源电力集团股份有限公司在加拿大安大略省投资的德芙琳风电项目并网发电。这是中国发电企业在海外投资的第一个风电项目,并首次实现了自主开发、自主建设、自主运营。德芙琳风电场装机容量10万千瓦,共安装49台GE风力发电机组,年上网电量预计3亿千瓦时,能够满足约3万个家庭用电。 在风电海外投资获突破的2014年,澳大利亚反倾销委员会对原产于中国和韩国的应用级风电塔作出反倾销终裁。其中,中国企业税率如下:上海泰胜风能装备股份有限公司的反倾销税为15%,其他中国企业的反倾销税为15.6%。这可谓影响2014年我国风电产业发展的最不和谐音符。
薄膜太阳能电池现状与发展趋势
发布日期:2013-07-29
太阳能是各种可再生能源中最重要的基本能源,生物质能、风能、水能等都来源于太阳能。太阳能电池是是一种通过光伏效应将太阳能转变为电能的一种装置,是利用太阳能的一种重要形式。
目前,人们根据所选用的半导体材料将太阳能电池应用技术分为晶硅和薄膜两大类。晶硅太阳能电池在现阶段的大规模应用和工业生产中占据主导地位,但由于其成本过高,限制了其发展。相比晶硅等其它太阳能电池,薄膜太阳能电池具有生产成本低、原材料消耗少、弱光性能优良等优势。随着世界能源紧缺,薄膜太阳能电池作为一种光电功能薄膜,可以有效地解决能源短缺问题,而且无污染,还可以实现光伏建筑一体化,易于大面积推广。
非晶硅薄膜太阳能电池
非晶硅薄膜太阳能电池转换效率较低,实验室转换效率只有13%,但工艺成熟、成本较晶硅低廉、制备方便,适于大规模生产。
非晶硅薄膜太阳能电池通常为叠层结构,玻璃基板上沉积了透明导电膜(transparentconductiveoxide,TCO)层、非晶硅层(a—Si层)和背电极层(Al/ZnO层)3层薄膜,其中非晶硅层通过磁控溅射法沉积。
相对于单晶硅太阳能电池,非晶硅薄膜是一种极有希望大幅度降低太阳电池成本的材料。非晶硅薄膜太阳能电池具有诸多优点使之成为一种优良的光电薄膜光伏器件。(1)非晶硅的光吸收系数大,因而作为太阳能电池时,薄膜所需厚度相对其他材料如砷化镓时,要小得多;(2)相对于单晶硅,非晶硅薄膜太阳能电池制造工艺简单,制造过程能量消耗少;(3)可实现大面积化及连续的生产;(4)可以采用玻璃或不锈钢等材料作为衬底,因而容易降低成本;(5)可以做成叠层结构,提高效率。
但同时非晶硅薄膜太阳能电池仍存在一些需要解决的问题。(1)由于Staebler-Wronski效应的存在,使得非晶硅薄膜太阳能电池在太阳光下长时间照射会产生效率的衰减,从而导致整个电池效率的降低;(2)沉积速率低,影响非晶硅薄膜太阳能电池的大规模生产;(3)后续加工困难,如Ag电极的处理问题;(4)在薄膜沉积过程中存在大量的杂质,如O2、N2、C等,影响薄膜的质量和电池的稳定性。
非晶硅薄膜太阳能电池的下一步研究主要有以下几个方向:其一是采用优质的底电池i层材料;其二朝叠层结构电池发展;第三是在保证效率的条件下,开发生产叠层型非晶硅太阳电池模块技术;最后使用便宜封装材料以降低成本。
多晶硅薄膜太阳能电池
poly-Si薄膜电池既具有晶体硅电池的高效、稳定、无毒、材料资源丰富,又具有薄膜电池的材料省、成本低的优点,它在长波段具有高光敏性,对可见光能有效吸收,且具有与晶体硅一样的光照稳定性,同时材料制备工艺相对简单,poly-Si薄膜电池技术有望使太阳电池组件的成本得到更大程度的降低,从而使得光伏发电的成本能够与常规能源相竞争。
限制太阳能电池转换效率的因素很多,提高吸光率和减少载流子复合是提高转换效率最重要的2种方法。
众所周知,吸光率越大,电池转换效率越高,短路电流密度.,筻也越大。si对可见光的光学吸收长度约为150um。由此可见,传统单晶与非晶硅太阳能电池的厚度为200um左右,有利于充分吸收太阳光能量。按照国际认定的标准,新一代薄膜太阳能电池的厚度应在50um以下。这意味着必须使较长波段的光在薄膜的上下表面间来回反射,以增加其光程,达到提高吸光率的目的。要使吸光率A(λ)在宽谱带范围内达到高值,可以采取以下2种方法。
第一种方法是使薄膜电池上表面反射系数Rf接近于0。为此,通常采用由ZnS、MgF、TiO2和Si构成的单层或多层减反膜。第二种方法是使薄膜电池背面的反射系数Rb接近理想的100%,通常用在基片上蒸镀金属膜作为反射层的方法增加电池背面的反射系数。
无论体晶硅还是薄膜硅太阳能电池,其内部的载流子复合都是不可避免的。在si薄膜太阳能电池中,大量的载流子复合发生在杂质中心、表面、界面和晶界处L2J在多晶硅薄膜和微晶硅薄膜中,晶界处会有晶界复合。为了减少这些复合。应尽可能减少薄膜中不需要的杂质,增大多晶硅和微晶硅薄膜中的晶粒尺寸等。
CIGS薄膜太阳能电池
铜铟镓硒薄膜太阳能电池是第三代太阳能电池的首选,并且是单位重量输出功率最高的太阳能电池。所谓第三代太阳能电池就是高效/低成本/可大规模工业化生产的铜铟镓硒(CIGS)等化合物薄膜太阳能电池。
CIGS具有非常优良的抗干扰、耐辐射能力,因而没有光辐射引致性能衰退效应,使用寿命长。CIGS是直接带隙的半导体材料,因此电池中所需的CIGS薄膜厚度很小(一般在2um左右)。它的吸收系数非常高达10-5cm-1,同时还具有很好的非常大范围的太阳光谱的响应特性。通过调节Ga/(In+Ga)可以改变CIGS的带隙,调节范围为1.04eV~1.72eV。CIGS系电池可以很方便地做成多结系统,在四个结的情况下,从光线入射方向按禁带宽度由大到小顺序排列,太阳能电池的理论转换效率极限可以超过50%。
CIGS薄膜在高于500℃的温度下沉积在涂有Mo的玻璃衬底上,并且与通过化学沉积形成的CdS层,组成CdS/CIGS异质结太阳能电池。以掺镓的CIS(CIGS)和以CdS为缓冲层制成的太阳能电池效率已高达21.5%。
目前大多数CIGS电池组件都含有CdS缓冲层,但使用CdS缓冲层也存在一些缺点。从恢复短波光生电流的观点来看,应该使用禁带宽度更宽的缓冲层,从环境的观点来看,镉的毒性将对环境产生负面影响。因此近年来研究使用的缓冲层材料有ZnS、In2S3、ZnSe、ZnO、SnO2、ZnIn2Se等,以取代CdS作为缓冲层,实现制备绿色无镉高效CIGS薄膜太阳电池,同时为了节约原材料和能源,还应该考虑尽可能地减小薄膜厚度。
有机薄膜太阳能电池
有机薄膜太阳能电池主要有:单层结构的肖特基电池、双层p-n异质结电池以及P型和n型半导体网络互穿结构的体相异质结电池。目前认为有机薄膜太阳能电池的作用过程分为3个步骤:光激发产生激子、激子在给体/受体(D/A)界面的分裂、电子和空穴的漂移及其在各自电极的收集。有机薄膜太阳能电池具有材料潜在的低价格、加工容易、可大面积成膜、分子及薄膜性质可设计性、质轻、柔性等显著优点,但目前有机薄膜太阳能电池光电转换效率很低、稳定性差,只有将光电转换效率提高到5%以上才可能大规模应用。
综上所述,薄膜太阳能电池因为低成本、低材料消耗、不断提高的转换效率,在未来光伏电池技术发展中占有越来越重要的位置,很多研究人员都在致力于薄膜太阳能的研究和开发。不同类型的薄膜太阳能电池具备各自的优缺点。a-Si薄膜太阳能电池成本较单晶Si太阳能电池低,但由于存在光致衰退效应,目前很难发展为具有稳定高效率的太阳能电池。而poly-Si薄膜太阳能电池兼具单晶Si和a-Si的优点,制备工艺相对简单,适合产业化大面积生产。CIGS薄膜太阳能电池效率较高,性能优越,建议科研工作者给予更多的关注。有机薄膜太阳能电池对于实现低能耗、低成本、无污染具有重要的意义,但转换效率低、长期稳定性差,想实现商用需要较长的研究过程。可以设想在不久的将来,随着科研工作的不断深入,薄膜太阳能电池目前面临的问题将逐一得到解决,性能将不断得到改善和提高,从而满足未来消费者对于能源的迫切需求。